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Purpose. Validate and exemplify a discrete, componentized, in silico, transwell device (ISTD) capable of

mimicking the in vitro passive transport properties of compounds through cell monolayers. Verify its use

for studying drug–drug interactions.

Methods. We used the synthetic modeling method. Specialized software components represented spatial

and functional features including cell components, semi-porous tight junctions, and metabolizing

enzymes. Mobile components represented drugs. Experiments were conducted and analyzed as done in

vitro.

Results. Verification experiments provided data analogous to those in the literature. ISTD parameters

were tuned to simulate and match in vitro urea transport data; the objects representing tight junction

(effective radius of 6.66 Å) occupied 0.066% of the surface area. That ISTD was then tuned to simulate

pH-dependent, in vitro alfentanil transport properties. The resulting ISTD predicted the passive

transport properties of 14 additional compounds, individually and all together in one in silico

experiment. The function of a two-site enzymatic component was cross-validated with a kinetic model

and then experimentally validated against in vitro benzyloxyresorufin metabolism data. Those

components were used to exemplify drug–drug interaction studies.

Conclusions. The ISTD is an example of a new class of simulation models capable of realistically

representing complex drug transport and drug–drug interaction phenomena.

KEY WORDS: agent-based modeling; discrete event; drug transport; drug–drug interaction; emergent
properties; simulation.

INTRODUCTION

The recently described in silico transwell system (1,2) is
an example of a class of synthetic, discrete, componentized,
computational models that are intended for refining and
testing hypotheses about interacting mechanisms occurring
during transport across cell barriers (3–5). A feature of this
new class of models is that autonomous, in silico components,
representing specific inter- and intracellular counterparts, can

be assembled and disassembled within the analogue system_s
framework to mimic, for example, a tightly confluent cell
monolayer in a Transwelli device that is being used for drug
transport studies. The consequences of interactions between
in silico mobile and fixed components, controlled by known
or hypothesized component-specific principles, can be mea-
sured and studied. The resulting data can be compared with
in vitro data to refine in silico behaviors and help clarify
posited, causal linkages that may underlie the transport
phenomena under investigation. Research on this class of
models is motivated by five broad expectations. (1) Exper-
imentation with such models will help unravel the complex
processes encountered, for example, when two or more drugs
interact simultaneously with various inducible transporters
and metabolic enzymes. (2) Future device components can be
Beducated,^ for example as in (6), to use the calculated
physicochemical properties (PCPs) of new compounds to
provide in silico experimental results from which acceptable
permeability predictions are obtained. (3) With progress on 1
and 2, relative transport properties of sets of new compounds
can be explored in advance of costly wet-lab experiments
with the intent of eliminating from further consideration
those with unacceptable properties. (4) Predicted in vivo
absorption properties of new compounds in animals and
humans, based on high throughput in vitro data, will become
increasingly accurate. (5) In silico screening will save time
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and reduce costs. What capabilities must in silico analogues
of in vitro systems exhibit in order to realize these expect-
ations? Their realization requires pushing modeling and
simulation capabilities to an entirely new level. We specify
nine capabilities in Appendix that the envisioned new class of
models will need to exhibit to achieve the preceding expect-
ations.

The feasibility of using synthetic models in this context
was demonstrated by an earlier in silico transwell system
(1,2). The in silico transwell device (ISTD) used for all
studies and sketched in Fig. 1 is an improvement. The
simulations rely on new mechanisms of component interac-
tion. The goal of this project has been to verify and validate
aspects of the ISTD. The results are evidence of an important
step toward achieving the above expectations. The ISTD
realistically simulates the 3D characteristics of a Transwell
device containing a confluent cell monolayer. We introduce
and validate a removable component that represents the
semi-porous tight junctions between cells. Its mechanism
draws on existing physical models of solute movement
through tight junctions. A mechanism of passive transport is
presented that simulates solute movement. Separate compo-
nents represent the compounds of interest. Their movement
and transport are governed by compound-specific logic. That
logic relies primarily on local information and the PCPs of
the compound (real or hypothetical) being simulated. An-
other component represents drug-metabolizing enzymes. It
has two interacting substrate binding sites.

Verification experiments using over a hundred different
hypothetical compounds (see BSupplementary Material^)
show that their simulated passive transport properties are
analogous to literature observations. An ISTD parameteri-
zation is presented, which validates against in vitro transport
data for urea and alfentanil. Without further adjustment,
when simply given the PCPs of each of 14 additional
compounds, the ISTD provides reasonable approximations
of the passive transport properties expected from in vitro

experiments. Essentially identical passive transport estimates
are also obtained for the same compounds when they are
studied together in one ISTD experiment. The enzyme
component is validated against a traditional two-site kinetic
model along with in vitro metabolism data for benzyloxy-
resorufin: It exhibits substrate self-inhibition. Finally, the
ISTD_s suitability for exploring drug–drug interactions is
demonstrated. Together the results represent an important,
early advance in our ability to build pharmaceutically useful,
scientifically informative models. To avoid confusion, includ-
ing conflating the model with referent reality, and to clearly
distinguish in vitro components and features, such as an
enzyme, a drug, or metabolism, from corresponding in silico
components and features, we generally use small caps when
referring to the latter.

METHODS

We used the Swarm platform and libraries (http://
www.swarm.org). It is the most mature of the agent-based
modeling platforms (7). It facilitates building autonomous,
articulable components (capability 8 in Appendix) that can
be plugged together to form an analogue system following
the synthetic modeling method. We coded in Java Swarm.
Doing so gave direct access to Swarm_s Objective-C libraries
and enabled the created software to be easily integrated with
statistical and mathematical software, such as R and Matlab,
for post-simulation data processing. The code may be
obtained from the authors. We conducted data analysis,
parameter optimization, graphing, and mathematical model-
ing in Matlab version 13. We repeated all simulations 20–50
times; results are reported as arithmetical mean values,
unless otherwise noted. We verified that the central limit
theorem holds for all observations. From inspection of Q–Q
plots or application of the Shapiro–Wilsk test, we concluded
that normality assumptions are valid for all observations.
When parameter optimization was required, we applied
standard nonlinear fitting algorithms provided in Matlab
until convergence was achieved.

Model Structures and Assumptions

The ISTD structure illustrated in Fig. 1 mimics the
structure of a Transwell device (TD). Its framework and
features are extensions of those detailed in (1), but are
refined and augmented to enable delivering the nine
capabilities listed in the Appendix. The ISTD represents an
arbitrary-width, square column section through an entire TD.
The section is subdivided vertically into five spatial compo-
nents, designated S1–S5. Each is discretized further using a
2D square grid, the dimensions of which control the lower
limit of spatial resolution and control the precision of the

Fig. 1. Transwell devices: in vitro and in silico. A Apical compart-

ment, B basolateral compartment, C epithelial cell (e.g., Caco-2)

monolayer, F support filter, V an arbitrary vertical column section

through the system. ISTD The in silico transwell device. e One of the

10,000 simulated 3D elements of S1. Insert S1–S5 from top to bottom

These five simulated 3D spaces represent the apical compartment,

apical cell membranes, intracellular spaces, basolateral cell mem-

branes, and the basal compartment of the transwell device; their

relative sizes are indicated; two elements in each space are shown.
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simulated behaviors. Each grid of 100� 100 elements has
toroidal boundaries. Together, the 104 elements comprising
each space represent the content of a corresponding part of
the TD or a portion thereof. For example, each element of S1
maps to 0.01% of the fluid in the apical TD compartment.
Elements in S2 and S4 map to portions of the apical and basal
cell membranes, respectively. The volumetric nature of each
S1–S5 element is simulated by placing at each grid location a
software object that acts as a container having an arbitrary
but specifiable capacity (a virtual volume). The capacity of
different elements can be analogous to pharmacokinetic
compartments having different volumes of distribution. An
element_s capacity is adjustable; in this report, it is identical
within each space, but different between spaces. These
elements can have arbitrary shapes, but in this report, each
is treated as an hexahedron with parallel sides as illustrated
in Fig. 1. An element is identified and labeled with relevant
chemical properties. For example, each element of S1 is
assigned whatever aqueous properties are required for the
experiments planned, such as pH (in silico pH), ionic
strength, etc. For this report, the effective capacity of each
element is given by a relative (with respect to cell membrane)
Bheight^ parameter (H) that maps to the height of that space
in the referent TD. The values used are listed in Table I and
are those reported in (8) and (9). Elements of S2 and S4 are
treated as having a capacity of 1.0 U3. Relative to an element
of S2, an element in S1 shares an interface with S1 and has a
capacity of 5.5� 105 U3. The resolution of S1–S5 can be
easily increased when required.

Objects are also used to represent other fixed and
mobile components. For this report, they are limited to
mobile compounds (also called drugs), fixed enzymes, and
fixed tight junction pores (or simply pores). As was done in
(2) and (6), components can be added to S2 and S4 when
needed to represent transporters or other cell membrane
components.

Discrete Event Schedules

Discrete event simulation can be more efficient than
discrete time simulation (10). ISTD simulations are ad-
vanced using dynamically scheduled discrete events. For
discrete time simulations, the state of each component is
updated at fixed intervals, regardless of whether or not an
event takes place. For discrete event simulations, computa-
tions are executed only when the state of a component
changes. The ISTD uses agents at two different levels to
direct and manage event scheduling. At the bottom level,
three agents, ScheduleTransitEvent, ScheduleLateralEvent,

and ScheduleEnzymeEvent, manage the progress of com-
pound relocation and transition into adjacent spaces, lateral
diffusion within each space, and metabolism (discussed
below), respectively. Above these agents is the master
ScheduleEvent agent; it oversees and coordinates the
activities of the other three. We used a hierarchical heap
tree data structure (11) to facilitate dynamic scheduling.
Doing so enabled efficient event insertion, deletion, and
exchange to be accomplished on the order of logn time: n is

Table I. ISTD Parameters

Category Name Description Values

ISTD worldXSize, worldYSize Dimensions of S1–S5 100� 100

tightJunctions Fraction of area covered by occupied by pores 0 to 0.001

tjSize Pore radius 0 to 16 Å

numENZ Number of enzymes in S3 40

cellularpH Simulated pH in S3 7.2 to 7.4

S1 thickness The relative thickness of S1 5.52� 105

S2 thickness The relative thickness of S2 1a

S3 thickness The relative thickness of S3 2.0� 103

S4 thickness The relative thickness of S4 1

S5 thickness The relative thickness of S5 3.19� 105

memPotential The transmembrane potential j57 mv

Physicochemical properties of compounds molecularWeight MW 100 to 500

isAcid Drug: a weak acid (otherwise, weak base) T or F

pKa Drug_s pKa 4 to 14

logPow Logarithm of partition coefficient j5 to +5

ionDiffusion Permeation due to ionized form of drug (%) 0 to 1

substrateOfENZ Drug is a substrate of the enzyme T or F

s1Prob Probability of binding to s1 0 to 1

s2Prob Probability of binding to s2 0 to 1

MProb Probability that metabolite is formed 0 to 1

a Enhancing factor for the 2nd site binding 0 to 5

b Inhibition factor for metabolism 0 to 1

Experimental condition numSolutes Initial amount in S1 or S5 0 to 40,000

drugTypes Types of drugs in the simulation 1 to 14

s1pH Simulated S1 (apical) pH 5 to 8

s5pH Simulated S5 (basolateral) pH 7.4

a2bDirection Donor is S1 (or S5) T or F

a Based on a membrane thickness of 7.5–10 nm.
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the number of current events in the heap tree. The
hierarchical structure was such that schedule changes
occurring under one scheduling agent did not affect other
schedules. Additional scheduling agents can be easily added
as the system evolves.

Movement of Compounds

As in (1,2,5, and 6) a compound represents m (m Q 1)
drug molecules. One compound located in one element of S3
(for one simulation cycle) represents the average number of
molecules occupying a corresponding volume of cytoplasm
during a 5 s interval. In this report, m is always large. The
relative in silico behaviors of different compounds within the
ISTD are intended to map to those of different drugs in vitro;
they are also expected to convey relative differences in PCPs.
Prior to the start of an in silico experiment, a certain dose of
compound is added to one space, typically S1. Within the five
spaces, compounds are uniformly distributed among ele-
ments, representing a uniform concentration within the
corresponding in vitro space. Each compound is identified
and labeled with values that map to selected PCPs of a
referent drug, such as pKa, octanol–water partition coeffi-
cient Pow, molecular weight (MW), etc. Any number of
different compounds can be studied simultaneously and
tracked individually in the same ISTD. However, no distinc-
tion is made between simulated molecules of the same type.
This design feature enables capability 9 in the Appendix.

Simulation of Transcellular Passive Diffusion

In (1) simulation of passive diffusion relied on a globally
specified concentration gradient. This gradient, rather than
local, within-system events, controlled simulation outcomes.
There are alternative, less deterministic ways to simulate
passive diffusion. The pharmaceutical sciences literature is
rich with examples of inductive, physical–chemical models
being used to represent and predict different aspects of
passive transport. Here, we explore the merits of adapting
selected physical models to provide the logic for compound
movement within and between ISTD elements. For simulat-
ed passive diffusion, we considered contributions from both
transcellular and tight junction pathways. The logic adapted
equations from (8,12 and 13). We estimated the cell
membrane–aqueous phase partition coefficient for unionized
compound (Pcu) at pH = 7.4 using Pcu = d(Pow)b (12), where
Pow is the referent compound_s octanol–water partition
coefficient. Using the alfentanil data reported in (13), we
estimated d = 0.437 and b = 1.328. For simplicity, and because
alfentanil is representative of the set of 14 compounds
discussed under Results, we used those values for all
simulations, although they could be made compound-specific.
Following the lead of (13), we assumed that ionized compound
could contribute to membrane–aqueous phase partitioning to
a small degree: we arbitrarily specified the partition coefficient
of the ionized compound to be 0.01Pcu. We then computed an
effective in silico membrane–aqueous phase partition
coefficient as Pc ¼ Pcu fu þ 0:01 1� fuð Þð Þ ; fu is the unionized
fraction of a simulated monoprotic weak acid or weak base in
a given space. We limited attention to compounds having a
single pKa.

An unbound compound has two independent (separately
scheduled) motions in a given space: lateral diffusion and
(vertical) transition to a new location. Lateral diffusion is
specified to be a random walk; consequently, the displace-
ment to a new location within some interval Dt will follow a
Gaussian distribution. We used a fixed update interval for
lateral movement of t = D5 s. During that interval, each
compound used one or more rules to decide whether or not
to move to a new element. A rule served as a placeholder for
in silico representations of more detailed mechanisms. We
specified rules based on existing physical models that have
been used successfully to describe similar processes. In each
simulation cycle a position (xt, yt) within the same space
was calculated by xt = x0 + [¾[4DaDt]rvIsinq] and yt = y0 +
[ ¾[4DaDt]rvIcosq]. (x0, y0) is the center of the compound_s
current grid location, rv is a random value drawn from a
standard Gaussian distribution (mean = 0, SD = 1), q is an
angle drawn from the uniform distribution on [0, 2p], and Da

is the referent compound_s diffusion coefficient in aqueous
solutions. Da was calculated using the Stokes–Einstein
equation (see Appendix) and was the same in S1, S3, and
S5. Although the calculated, new position was precise, only
the grid space of that new location was recorded. If the new
grid location was occupied (e.g., by a pore or an enzyme),
then the relocation calculation was repeated until successful.

As the simulation advanced, compounds in S1, S3, and
S5 were repositioned Bvertically^: they were moved Bup^
(toward S1_s air–media interface) or Bdown,^ as described
below, relative to their current location in that virtual
volume element. Compounds were also given an option to
transit into an adjacent space. A compound that was Bclose^
to a membrane interface, such as S3–S4, should have an
option to transition (from S3 to S4) sooner than a compound
that is Bfar^ from that interface. To provide this option,
beginning at the start of an experiment, every compound used
a rule to schedule a transition opportunity at some future
time, Tt; for compounds within S1, S3, and S5, that time was
calculated using Einstein_s 1D diffusion function: Tt ¼
Tc þ H � h0ð Þ2=:2Da . tc is the current simulation time; H is
the relative Bheight^ of elements within the space in which the
compound resides. h0 is the compound_s current location
within that element. In S1, h0 = 0 at the air–media interface, in
S2 h0 = 0 at the S1–S2 interface, and so on. At Tt, the
compound calculated a new location for itself: hn ¼ h0 þ
Gaussian 0; H � h0ð Þ½ � . Define P1 ¼ Pc= 1þ Pcð Þ and P2 ¼
Pcð Þ�1=½1þ Pcð Þ�1� ; (Pc)

j1 as the effective in silico aqueous
phase-membrane partition coefficient. For a compound in S1
or S5, when hn > H and a pseudorandom number (PRN)QP1,
it transitioned into the adjacent membrane space; otherwise, it
was relocated randomly within its original element. When
hn < 0, it was randomly relocated within its original element.
For a compound in S3, when hn > H and a PRNQP1, it
transitioned forward (away from the space in which the dose
was placed) into that adjacent membrane. Otherwise, if a
separate PRNQP2, the compound transitioned backward into
that adjacent membrane; if that PRN < P2, it was relocated
randomly within S3. All PRNs were drawn from a uniform [0,
1] distribution using a Mersenne Twister random number
generator.

Upon arrival in S2 or S4, a compound again scheduled a
transition opportunity at some future time: Tt ¼ Tc þ f þ bð Þ
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H2
�

2Dm . H is the relative Bheight^ of S2 and S4. (f + b) is an
estimate of the number of times in 10j5 s that a compound
might transition from one side of the membrane to the other
(forward, f; b, backwards; e.g., when dosed in S1, Bforward^ is
from the S2–S1 interface to the S2–S3 interface). Dm is an
estimate of the referent compound_s membrane diffusion
coefficient. Just like Da, Dm was calculated using the Stokes–
Einstein equation and from the in vitro alfentanil perme-
ability data it was estimated to be Da=0:231 ¼ Dm at 37-C
(see Appendix). For simplicity, we used that same value for
all other simulations. Define P3 ¼ 1= 1þ Pcð Þ½ �f ½1=ð1þ Pcð Þ�1Þ�b ; it is
the probability that a compound fails to transition (e.g., to S1
or S3 if it is in S2) within 10j5 s. Define P4 ¼ P1= P1 þ P2ð Þ . If at
Tt, a PRNeP3, the compound stayed in the membrane.
However, if that PRN > P3 and a separate PRN < P4, the
compound transitioned forward (away from the originally
dosed space) into the adjacent aqueous space. Otherwise, the
compound transitioned backward to the aqueous space from
which it came.

A compound was regarded as having been transported
when it reached the acceptor compartment. To study
simulated apical-to-basal permeability compounds were
seeded randomly in S1. By enabling compounds to move
both forward and backward, we were able to study perme-
ability under non-sink conditions. Obtaining a measure of
simulated effective permeability coefficient Peff (the perme-
ability coefficient of just the cell monolayer) was accom-
plished by conducting a control experiment in which the cell
monolayer (S2, S3, and S4) had been removed: 1

�
Peff

� �
¼

1=Ptotalð Þ � 1=Pcontrolð Þ .

Transit to and through Pores

Pores are container objects that represent the semi-
porous tight junctions between adjacent cells. Each one
spanned S2, S3, and S4. They typically occupied no more
than 0.1% of these three spaces. When a compound in S1
(or S5) was located Babove^ (or Bbelow^) a pore, for
simplicity we defined a transition counterpart to Pc and
specified it to be 1.0 for all compounds (it is treated as
Bpartitioning^ from one aqueous environment to another).
As a result, P1, defined above, became 0.5: the value can be
tailored to each compound when that is needed. When
hn > H and a PRN Q 0.5, a compound Babove^ (or Bbelow^) a
pore transited into the pore; otherwise, it was relocated
randomly within the original element. The compound exited
the pore either from its entry point or at the opposite end.
To simulate passage through a pore we adapted rules based
on the theoretical pore model described in (8) and (14). A
compound in a pore scheduled an exit opportunity, as
above, at some future time, Tt.Tt ¼ Tc þ H � h0ð Þ2=2Dp .
Forapore,H is the Bdistance’’ across S3, S2, and S4 and h0 is
the compound_s current location within the pore. Dp is an in
silico analogue of the paracellular, permeability coefficient
in (8), calculated as described in the Appendix. At tt, the
compound calculated a new location for itself: hn ¼
h0 þGaussian 0; H � h0½ �ð Þ . Conditional on a PRN Q 0.5, if
hn > H, the compound exited into S5, but if hn < 0, it exited
back into S1; otherwise, it was relocated randomly within
the pore.

Simulated Metabolism

One of the project goals has been to enable several
different compounds to mingle together within the same
simulated environment and have opportunities to interact
with the same simulated enzymes and transporters. For
clarity, all cytoplasmic components that can bind a referent
drug, including drug-metabolizing enzymes, are conflated
and represented collectively by identical objects: enzymes.
One enzyme maps to e (e Q 1) enzymes and may map to more
than one type of metabolic enzyme. For this report, e is large
and unspecified. Some metabolic enzymes, in particular
CYP3A4, can exhibit non Michaelis–Menten characteristics
in the presence of an inhibitor or an activator (in some cases
it is the drug itself). CYP enzymes harbor at least two
substrate-binding sites (15–18). For some substrates, reaction
patterns have been observed consistent with self-activation
and/or self-inhibition. To be scientifically useful, in silico
CYP analogues need to be able to exhibit a full range of
similar behaviors. We used a two-site enzyme such that
simulated metabolic data validates against values calculated
using specific parameterizations of the two-site kinetic model
presented in (17): It has two binding domains within an active
site and is described in the Appendix.

Upon initiating a simulation, a number of enzymes
were randomly assigned to S3, one per element. Should
different types of enzymes be needed, they can be repre-
sented by extending the class enzyme to sub-class objects
that inherit the enzyme_s logic. As diagrammed in Fig. 2,
binding site s1 can generate a metabolite (M); the other, s2,
cannot; however, binding to s2 can influence events at s1
and visa versa. An enzyme_s state (and that of bound drug)
is updated during each simulation cycle: 5 s was arbitrarily
chosen as the cycle length. Enzymes are selected randomly
for update at the start of each simulation cycle. Sites s1 and
s2 are arbitrarily assigned to face in opposite directions, as
indicated in Fig. 2. Consequently, as illustrated at the
bottom of Fig. 3, they Bsee^ different portions of the
enzyme_s local neighborhood. During a simulation cycle,
drug in some locations within the local neighborhood was
available to one site but not the other. The orientation of
the enzyme could be specified prior to simulation or the
enzyme could use local information to orient itself. For the
results discussed here, orientations were random. We
specified that any drug located Bnear^ an enzyme—in the
local neighborhood in Fig. 3—would have an opportunity to
access that enzyme within a simulation cycle. For the
current 5-s, simulation cycle, drug in any of the six locations
within one of the two shaded areas had access to only one
site during that cycle. Drug in the two unshaded locations
([2, 0¶] and [2, 2¶]) could access either site.

At the start of a simulation cycle, an enzyme exists in
one of the four states depicted in Fig. 2. During a simulation
cycle, a number of enzyme state changes can occur: each one
is governed by a probability parameter. For example, the
parameter MProb specifies the probability that a drug bound
to s1 will be converted to a metabolite during that cycle.
Seven probabilistic parameters are identified in both Figs. 2
and 3. The logic used by an enzyme during a simulation cycle
is diagrammed in Fig. 3. It first surveys the local neighbor-
hood and identifies the location of each drug, noting whether
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it is near s1, s2, or both. It then assigns each drug a randomly
drawn number (a PRN drawn from [0, 1]). That value enables
the enzyme to make decisions as it works through the logic in
Fig. 3; those decisions determine the drug_s fate.

Having drug bound to s1 during a simulation cycle can
result in metabolism: It is governed by the parameter s1Prob
(or as1Prob when s2 is occupied). Having drug bound to s2
can influence metabolism but cannot cause it (however, it is
easy to enable metabolism from s2 when that is needed).
Binding to s2 is governed by the parameter s2Prob (or
as2Prob when s1 is occupied). Consider the case when both
sites are vacant and a drug is near s1 and s2. If the assigned
PRN < s1Prob= s1Probþ s2Probð Þ , then the drug binds to
s1 (the drug–s1 complex is formed). Otherwise, drug–s2 is
formed. When drug–s1 is formed and the assigned
PRN < Mprob, a metabolic product (M) is formed and
released into an adjacent element (the drug object is
deleted). However, if the assigned PRNQMProb, the com-
plex remains intact. For simplicity during these studies, only
one M is formed each cycle.

Consider another case: at the start of the cycle, drug is
bound to s1: the enzyme selects the drug near s2 that has the
smallest assigned PRN. If that PRN < as2Prob, it becomes
bound to s2 resulting in a two-drug complex: the second
bound drug influences metabolism. If a PRN < bMProb, a
metabolite is formed and released into an adjacent element.
Additional sequences of events are specified in Fig. 3. Alter-
native, equally valid methods are possible to manage the
state changes in Fig. 2 during a simulation cycle, but we have

not explored them. Following validation of the rules in Fig. 3,
the relative probabilistic parameter values can be automat-
ically adjusted to accommodate shorter or longer simulation
cycles without altering the measured time-course of events.

RESULTS

Two categories of experiments were conducted: verifi-
cation and validation. The extensive verification experiments
provided evidence that an ISTD, as a software device, could
be trusted to perform as intended: the transport properties
under different conditions for a wide range of simulated
compounds were consistent with wet-lab observations. The
validation experiments showed that an ISTD can be tuned to
provide permeability data that match those of specific
compounds. Further, when given the properties of a specific
compound, results from ISTD experiments can be made

Fig. 3. A diagram of the logic followed by each metabolic enzyme

during each simulation cycle. D Drug, M metabolite, D–s1 (or D-s2)

drug bound to s1 (or s2), PRN a uniform pseudorandom number

drawn from [0, 1]. The numbers within diamonds identify seven

questions (also indicated in Fig. 2). The answer to each question

determines which, if any, state change will occur and whether the

drug is converted to a metabolite. The 5� 3 grid below the diagram

exemplifies an enzyme_s local neighborhood. The enzyme is located

at the central grid point (2, 1¶). The double arrow indicates that s1

and s2 face in opposite directions. Assume that by chance s1 faces

left. Drug in any one of the six gray grid spaces on the left have

access to s1 (but not s2) during a simulation cycle. Drug in any one of

the six gray grid spaces on the right have access to s2 (but not s1)

during a simulation cycle. Drug at grid points (2, 0¶) and/or (2, 2¶)

have access to both s1 and s2. Other local neighborhood management

options were possible, but were not selected.

Fig. 2. The generic two-site, four-state, metabolic enzyme component.

In this report we use it to represent CYPs. Each enzyme has two drug

(substrate) binding sites, s1 and s2, that use the logic in Fig. 3 to

interact (or not) with each compound in its local neighborhood. Those

interactions can lead to state changes. A drug that binds to s1 (but not

s2) may get converted to a metabolite (M). The numbers within

diamonds (also indicated in Fig. 3) identify the enzyme_s logic: seven

questions (and their answers) that govern whether state change will

occur within a 5-s simulation cycle and/or whether the drug will be

converted to a metabolite. An answer to each question is provided by

the value of at least one of the following five parameters. s1Prob is the

probability that the considered drug will bind to s1 when s2 is free.

s2Prob is the probability that the drug will bind to s2 when s1 is free.

MProb is the probability the metabolite will form when s1 is occupied

and s2 is free. a is the degree of inhibition (or enhancement) of s1Prob

and s2Prob caused by a substrate occupying the other site. b is the

degree of inhibition (or enhancement) of MProb caused by the

substrate occupation of s2.
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similar to those from wet-lab experiments. Stated differently,
the validation results demonstrate that the Turing test
capability stated in the Appendix has been demonstrated.
Results from several types of verification experiments are
described and presented in detail in Supplementary Material
(SM) and we briefly summarized below.

Simulated Passive Transport

To verify that the analogue system can simulate passive
transport consistent with in vitro observations, we conducted
in silico experiments using compounds having the following
range of properties; MW: 100 to 500; logPow: j5 to +5; pKa: 4
to 14. In most simulation experiments, we assigned 0.066% of
the represented area to pores (the reasons are discussed
below). We then tuned pore size so that simulated urea
transport was validated against the data reported in (8; also
discussed below). The finalized pore radius mapped to 6.66 Å
in vitro. Except where noted, we used those values.

We first measured the percentages of 55 different,
unionized compounds remaining in S1 after 15 min; this
duration was sufficient for random, Bbackward,^ compound
movement to influence results. From the results (SM, Fig.
S1), we calculated Ptotal; the data exhibited patterns similar to
those reported in (12,19). The extent of transcellular
transport was dominated by logPow. Very limited transport
was observed for the most hydrophilic compounds, consistent
with expectations. There was a modest decline in percent
transported for the most lipophilic compounds (beginning at
logPow = 3). With increasing MW, the percent of dose trans-
ported also decreased. These behaviors were emergent
properties of the local mechanisms: they were not pre-
specified. Results when dosing to S5, rather than S1 (not
shown), were similar.

Additional experiments verified the combined influence
of pKa and logPow. Both exerted a considerable influence on
simulated transport. Each of 84 different, small (each having
MW = 100), weak base, compounds was studied (SM, Fig.
S2). The data show that the influence of pKa is most dramatic
for compounds having �1 � log POW � 1 : the influence of
pKa decreased as logPow deviated from zero. For the six most
hydrophilic compounds (logPow =j2) that were mostly
ionized (pKa Q 9), essentially all of the simulated transport
was via pores. The relative contribution of pore transport
decreased with decreasing logPow and pKa values.

Simulated Transport Through Tight Junctions

The normal, effective pore radius for confluent Caco-2
monolayers was reported in (8) to be about 4.6 Å. When
perturbed, the effective radius increased to an average of
about 14.6 Å. With that range in mind, we simulated pores
having radii ranging from 0 to 16 Å. We simulated transport
for each of eight weak base compounds (pKa: 4–10) having
MW = 100. To maximize the relative amount that transited
through pores, we specified logPow =j2 for each. The
percent of total transport to S5 (starting from S1) that was
a consequence of transport through pores was calculated
(SM, Fig. S3). When the ionized fraction is significant,
increasing pore radius significantly increased transport

through pores, and the effect of pKa was dramatic. Increasing
pore radius further had an insignificant effect.

We also examined the effect of pore size on simulated
transport for sixty hydrophilic (logPow =j2), neutral com-
pounds having MWs in the range 100 to 500. The effect of
increasing pore size was nonlinear. Even after 50 min, when
the pore radius was 16 Å, only about 2.2% of the MW = 500
compound reached S5 (SM, Fig. S4a). For the pore radii range
of 4.5–7 Å, which is typical for confluent epithelial cell
monolayers, less than about 1% of the compounds having
MWQ 200 reached S5 within 50 min. As expected, MW had a
dramatic influence on the fraction reaching S5 (SM, Fig. S4b).

Reports of the percentage of cell culture areas assign-
able to porous tight junctions range from 0.01 to about 0.1%
(20,21). Observing the consequences of changing pore
density provides useful verification information: halving
density should halve the percent transported through tight
junctions, while decreasing density should linearly increase
the percent of transcellular transport. The results of such
experiments showed a reasonably linear relationship between
pore density and percent transported, and between pore
density and mean percent transcellular transport for all four
pore sizes (SM, Fig. S5).

Validation and Prediction: Passive Transport

The validation of a model is defined (22) as Bthe process
of determining the degree to which a model or simulation is
an accurate representation of the real world from the
perspective of the intended uses of the model or simulation.’’
Face validation is Bthe process of determining whether a
model or simulation seems reasonable to domain experts,
based on the model_s performance.^ Structural validation is
the process of determining that the assumptions, algorithms,
and architecture provide an accurate representation of the
composition of the real world as relevant to the intended
use.^ The above verification experiments also provided
essential face and structural validation evidence.

We began validation with urea (MW = 60; logPow =j2).
Although mannitol is preferred for measuring pore perme-
ability in vitro, we elected to validate against urea data in
part because there is a small amount of transcellular
transport. Urea permeates slowly through confluent Caco-2
monolayers (8), primarily through semi-porous tight junc-
tions. We iteratively tuned pore surface density and radius
and compared simulated with in vitro data up to 3 h. The
results in Fig. 4 were judged by inspection to be acceptable:
the pore density was 0.066% and pore radius mapped to 6.66
Å in vitro. Both values are within reported ranges (12,23).
Results of transport through pores and through cells for a
typical single experiment are shown, along with the 95%
confidence intervals of measurements (n = 30) made every 60
s. Within the data from the single experiment, a decline in the
accumulated urea is a consequence of the realistic net random
movement of some urea objects from S5 back toward S1.
More than 96.3% of the transported urea arrived in S5
through pores.

We also estimated the total permeability of mannitol
(MW = 182; logPow =j3.506, neutral), based on the data that
showed around 0.1% of mannitol should reach S5 by 15th
minute (see SM, Fig. S1). A mean Ptotal of 2.06� 10j7 cm/s
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was obtained. That falls between the mean Ptotal of
2.37� 10j7 cm/s in (8) and 1.51� 10j7 cm in (13).

We fixed the two pore parameters to the values stated
above and then began validation against alfentanil data.
Alfentanil is a lipophilic, weak base: MW = 416, logPow = 2.16
and pKa = 6.5. It rapidly permeates Caco-2 monolayers. It is
known not to be a significant substrate of efflux transporters.
The fact that metabolism is negligible in vitro makes
alfentanil an ideal compound for validation of passive,
transcellular transport and is representative of the set of 14
other compounds studied below. In vitro permeation data are
available over a range of donor compartment pH conditions
(13), and it is against these data that we validated.

Any intracellular non-specific binding has been conflat-
ed into the probability of exiting S3, but can be factored out
as needed. The pH of S1 was varied from 5.0 to 8.0 to match
in vitro experiments. The pH in S3 and S5 was held constant
at 7.4. In silico values of Peff were calculated as described in
BMethods.^ The results in Fig. 5a agree closely with the in

vitro Peff values, which were measured experimentally for
different donor compartment pH values and then fit by a
carefully reasoned mathematical model (see Appendix). The
similarities between in vitro and in silico values are as close, if
not closer, than between the in vitro and mathematical model
values reported in (13). We compared the time-series
transport values from that parameterized, mathematical
model with the ISTD-generated values in Fig. 5b by
calculating their ratios. The results are graphed in Fig. 5b
for the control and three pH values: 5.0, 6.5 and 8.0. The

ratios for pH 6.5 are representative of the ratio values for the
other six pH conditions that are not plotted. All ratios
approached 1.0 with increasing time; the largest difference in
predictions occurs prior to 300 s, when assumptions of ideality
underlying the mathematical model do not map to events
occurring within the ISTD. More specifically, the mathematical
model assumes bulk flow and ignores the volume of cells.
Consequently, there was no lag-time. The ISTD did not use
those assumptions. The simulations showed a short lag time
before compounds began reaching S5. Therefore, initially
(te 30 s), the ratios of the two models are bigger than 1.0.
During this interval, compounds accumulated in S3, which

Fig. 4. Validation of passive transport within the ISTD using in vitro

urea transport data. A dose of 1,000 compounds representing urea

(MW = 60 and logPow =j2) was added initially to S1; simulations

were repeated 30 times. The number of urea transported to S5 was

recorded every 60 s until the third hour. Pore density and pore radius

were iteratively auto-adjusted until the transport data matched the 3-h,

in vitro, urea transport data reported in (8). A pore density of 0.066%

and pore radius of 6.66 Å gave the results shown. The central jagged

line shows the number of urea that had accumulated in S5 at the

indicated times during one typical simulation. The lower gray line

shows the number of urea transported transcellularly to S5 during that

same experiment. The insert shows the mean values of trans-pore,

paracellular transport for 20 simulations along with the in silico 95%

confidence interval (gray area). The black circles are the in vitro data

from (8).

Fig. 5. Validation of passive transport within the ISTD using in vitro

alfentanil transport data. All ISTD-specific parameter values were

the same as those used to match the urea in Fig. 4. Only Da for

alfentanil was tuned to obtain the match shown. A dose of 1,000

alfentanils was added initially to S1; simulations were repeated 20

times. The number of alfentanil transported to S5 was recorded for

1,000 s. a Mean Peff values for alfentanil from in vitro experiments

(open circles) and for alfentanil (filled circles) are plotted vs pH of

the apical (S1) compartment. Vertical bars Standard deviations (for

most experiments they are covered by the filled and open circle). The

gray curve is a trend line. b Transport from two models are

compared. The amount of alfentanil transported to the basal

compartment in vitro for each of nine apical compartment pH values

was calculated using the mathematical model in (8) that had been fit

to the data in a. The corresponding simulated values were deter-

mined from the in silico experiments in a. The ratios of these values

are plotted vs time for three selected pH values (5.0, 6.5, and 8.0) and

the control. The ratio values for the other six pH conditions were

similar to the pH 6.5 values.
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caused a subsequent surge in compounds reaching S5. But,
there were no such events in the mathematical model. As a
result, sub-sequentially (30e te 300 s) the ratios of the two
models become smaller than 1.0.

Having adjusted the in silico Da for alfentanil so that the
ISTD validated against referent data, we assessed how well
that ISTD would predict logPeff values for other compounds
when given only MW, logPow, and pKa, without any further
ISTD refinement. We focused on 14 of the passively trans-
ported compounds reported in (14). The PCPs are listed in
Table II. The resulting ISTD-predicted logPeff values are
graphed in Fig. 6. The correlation coefficient was 0.885 and
the residual sum of squares was 1.88. For comparison, we
fitted the same in vitro data using a classical, linear,
multivariate model that used the PCPs in Table II. The
result was log Peff ¼ �2:80� 0:004MW � 0:06pKaþ 0:30 logPOW �
0:129c ; c is a binary variable: for a weak base, c = 1; for a
weak acid, c =j1. The correlation coefficient for this model
was 0.823 and the residual sum of squares was 2.13.

The Two-Site Analogue of Metabolizing Enzymes

An advantage of the synthetic modeling method is that
components can be verified and validated separately. The
resulting, validated component will reliably retain that
verified functionality when plugged into composite compo-
nents such as S3. The enzyme in Fig. 3 was intended to mimic
the two-site kinetic model for substrate inhibition in Scheme
5 and equation 11 in (17). Our expectation was that data
obtained from operation of these enzyme objects could be
fitted by the referent kinetic model. To verify that, we
conducted five cross-model validation experiments. Enzymes
were parameterized as specified in Table III. In all five cases,
s1Prob and MProb were held constant at 0.5 and 0.05,
respectively. Except for s2Prob = 0 in the control case, which
results in an enzyme exhibiting simple Michaelis–Menten
kinetics, s2Prob was held constant at 0.05 in the other four
cases. Also, in those four cases, the a/b ratio for the enzyme
ranged from 2 to 50. Only the S3 space was used, simulating

an in vitro metabolism study using microsomes isolated from
rat hepatocytes; pore density was set to zero. The test
compound had these properties: MW = 301.5, logPow = 2.11,
and pKa = 7.4. Forty enzymes were placed randomly in S3.
Initial substrate levels ranged from 100 to 40,000. All
simulations were terminated after 35 s, which was adequate
to calculate initial reaction rates. Because only a few
compounds bind or get metabolized in 35 s, 50 experiments

Table II. Physicochemical Parameters of 14 Drugs

Namea MW pKa Acid/Base logPow Linear Model logPeff In Vitro logPeff ISTD logPeff ISTD logPtotal

Amiloride 230 5.26 Base j0.20b j4.26 j3.79 j4.08 j4.25

Antipyrine 188 1.4c Base 1.79 j3.24 j3.35 j3.63 j3.99

Atenolol 266 10.1 Base 0.44 j4.53 j4.7 j4.82 j4.86

Cimetidine 241 6.71 Base j0.09 j4.36 j4.52 j4.05 j4.23

Desipramine 266 10.6 Base 4.00 j3.50 j3.36 j3.68 j4.03

Fluvastatine 411 4.32 Acid 4.71 j3.44 j3.62 j3.70 j4.08

Furosemide 331 4.06 Acid j1.06d j4.58 j5.3 j5.34 j5.35

Ketoprofen 254 3.49 Acid 3.67 j2.81 j3.08 j3.68 j4.02

Metoprolol 267 10.1 Base 1.97 j3.82 j3.89 j3.76 j4.07

Naproxen 230 4.06 Acid 3.26 j3.14 j3.08 j3.64 j4.01

Piroxicam 331 4.66 Base 0.45 j4.17 j3.11 j3.80 j4.1

Propranolol 259 10.1 Base 3.00 j3.73 j3.54 j3.65 j4.02

Ranitidine 314 9.04 Base 0.79 j4.55 j4.57 j4.21 j4.35

Terbutaline 225 12.0 Base 1.07 j4.31 j4.52 j4.27 j4.38

a Drugs, their PCPs, and in Vitro logPeff are taken from Table I of (14). Except for antipyrine, drugs with one or more missing values were not

selected.
b The value was set to j0.20 according to (26); the value was j1.03 in (14).
c The value was set to 1.4 according to (27).
d The value was set to j1.06 according to (28); the value 2.0 in (14) led to under-estimates, which were discussed by Obata et al. (14).

Fig. 6. Predicted logPeff values from two models are compared. First

model: the ISTD was parameterized and 30 experiments were

conducted as in Fig. 5 for each of the 14 drugs in Table II. Closed

symbols Mean logPeff value for each compound is plotted against its

in vitro counterpart. The correlation coefficient is 0.885. Second

model: the 14 in vitro logPeff values were fit to the four-variable,

linear model described in the text. Open symbols: the logPeff value

for each drug, calculated from the fitted, four-variable linear model,

is plotted against its in vitro counterpart. The correlation coefficient

is 0.823. The straight gray line: y = x. Insert logPtotal values from the

simulated experiments are plotted against the corresponding logPeff

values, for each of the 14 drugs. The deviation logPtotal = logPeff is

due in part to absence of stirring in the current ISTD.
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were conducted for each set of enzyme properties. The initial
reaction rates were plotted (Fig. 7). The referent kinetic
model was then fitted to the simulated data using least
squares regression, assuming the content of S3 maps to a 1
mM solution; that amount of solute was represented by 600
compounds. Values calculated from the five fitted equations
are graphed in Fig. 7; the fitted parameter values are listed in
Table III. For the control case (s2Prob = 0), there should
have been no evidence of inhibition, and there was none. For
the other cases, when a was fixed and a/b increased, the
maximum reaction rate decreased but the degree of inhibi-
tion increased; when b was fixed and a/b increased, both the
maximum reaction rate and the degree of self-inhibition
decreased. In addition, when a/b was fixed, the same
maximum reaction rate was maintained, but larger a or b
values lead to less self-inhibition. Note that although MProb,
s1Prob, and s2Prob were held constant at 0.5, 0.5, and 0.05,
respectively, each set of KS, Ki and Vmax values in Table III
for the fitted kinetic model are unique. This observation
illustrates that the mapping between parameter values in the
two model types is neither simple nor straightforward: they
are two different models that can generate the same
observables.

The metabolism of benzyloxyresorufin to resorufin by
P450 3A4 exhibits self-inhibition. Shou et al. (17) fitted data
for that transformation to the two-site kinetic model de-
scribed above. We replicated that fit. The results are graphed
in Fig. 8a. We then used S3 from Fig. 7 with zero pore density
and 40 enzymes and set compound PCPs to correspond to
benzyloxyresorufin (MW = 303.3; Pow = 3.64). Experiments
were conducted as in Fig. 7. To map our simulation results
to the data in (17), we specified that 600 benzyloxyresorufins
in the S3 space represented 1 mM benzyloxyresorufin. We
iteratively tuned the five enzyme parameters. Initial reaction
rates were obtained from data collected during the initial 35 s
of simulation. Each experiment for the final parameterization
was repeated 30 times and the results averaged. Results from
a match, judged acceptable by inspection, are shown in Fig. 8b.
The error bars show the standard error of the mean for the
simulated data.

Multiple Compounds, Same Simulation Experiment

Achieving capability 6 is an important objective: the
ISTD must be reusable for simulating the absorption and
transport of multiple compounds in the same simulation, not
just one compound in each separate simulation. All of the

preceding simulations were conducted using just one com-
pound type. The objects and agents within the ISTD are
capable of distinguishing between any numbers of different
compounds. To verify that capability, we repeated the
experiment in Fig. 6, but added all 14 compounds to S1 at
the same time. Little interaction was expected because the
transport of each compound was passive. However, there
could be competition for pore access. The simulations were
repeated 30 times. The results are graphed in Fig. 9. The
difference between the two sets of results (Figs. 6 and 9) was
within the range for ISTD experimental variability. The ratio

Table III. Comparison of Parameters Between ISTD and Classical Kinetic Model

ISTDa Kinetic Modelb

a s1Prob s2Prob b MProb a¶ KS (mm) KI (mm) b¶ Vmax nmol/min

0 0.5 0 0 0.5 0 3.64 0 0 221.93

5 0.5 0.05 0.5 0.5 0.36 4.51 51.19 0.61 224.36

1 0.5 0.05 0.5 0.5 0.54 5.25 63.09 0.51 258.01

5 0.5 0.05 0.1 0.5 0.26 4.98 38.10 0.37 236.43

1 0.5 0.05 0.1 0.5 0.47 6.32 50.55 0.30 287.85

a ISTD parameter values used to obtain the data in Fig. 7.
b Described in Appendix; parameter values obtained from the best fit of the data in Fig. 7.

Fig. 7. Verification of the two-site enzyme component. Prior to

initiating simulation, 40 enzymes were randomly placed in S3. Five

different drug types were studied; however, they share the same

PCPs (MW = 301.5, logPow = 2.11 and pKa = 7.4). For each simulation,

a dose of 100 to 40,000 drug objects of the same type was added to

S3. Pore density was set to zero. The production of released (from an

enzyme) metabolites was measured for 35 s; initial reaction rates

were calculated for 50 experiments per condition. The left and

bottom axes are the actual in silico values; the right and upper axes

allow the simulated data and their fitted kinetic parameter values to

be compared to the data in Fig. 8. Simple Michaelis–Menten (top

curve): s2Prob between enzymes and drug was set to zero to verify

that the resulting ISTD would exhibit simple Michaelis–Menten

kinetics. The other four drug types had s1Prob = MProb = 0.5 and

s2Prob = 0.05 along with the listed a and b values in Table III. The

right and upper axes assume that 600 compounds in the S3 space

mapped to 1 mM substrate. The simulated data were fit to the two-

site kinetic model from (17; the equation is provided in the

Appendix); the curves are the best fits (least squares). The fitted

parameter values are listed in Table III.
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of correlation coefficients from Figs. 6 and 9 data was 0.885/
0.881 = 1.005. The insert in Fig. 9 is a plot of the values for
logPtotal and logPeff determined separately for each of the 14
compounds vs the corresponding values determined when all
14 were simulated in the same experiment. For logPtotal

values, the correlation coefficient was 0.998; for logPeff

values, it was 0.992.
Finally, we conducted simulations to verify that the

ISTD with 40 enzymes added randomly to S3 can be used to
simulate drug–drug interactions. We used two compounds
(any number of different types can be studied), both having
the same PCPs: MW = 301.5, logPow = 2.11, and pKa = 7.4, as
in Fig. 7. For simplicity, we inactivated the s2 site by setting
s2Prob = 0 to obtain simple Michaelis–Menten kinetics. The
target compound had s1Prob = 0.5 and MProb = 0.5; initial S3
compound levels ranged from 100 to 40,000. Initial reaction

rates were calculated as in Fig. 8 using data from the first 35 s
of simulation. Experiments were repeated 50 times; mean
values were plotted. In the first set of experiments, 10,000
inhibitors (MProb = 0.5 with s1Prob = 0, 0.25, or 0.5) were
added initially along with the target compound. One in-
hibitor, like one compound, maps to a large number of
inhibitors molecules in vitro. The results are graphed in
Fig. 10a. The linear Lineweaver–Burke plots (the insert)
intersecting at the same 1/(initial velocity) value are charac-
teristic of classical single-site competitive inhibition. We
similarly studied the consequences of having different initial
quantities of inhibitor in S3: none, 5,000, 10,000, and 15,000.
The parameter values for the inhibitor were MProb = 0.5, and
s1Prob = 0.5. The results are plotted in Fig. 10b. The sigmoid
curves are characteristic of classical, competitive inhibition.

DISCUSSION

In Silico to In Vitro Mappings

In vitro models have proven to be useful research
analogues for research into selected aspects of organisms.
When useful, there is a mapping between the two systems_
observed phenomena. Stated differently, an in vitro model
will be most useful when its phenotype overlaps phenotypic
attributes of the in vivo system. Within the region of overlap,
a mapping may also exist between the mechanisms underly-
ing the measured phenomena. As many in vitro–in vivo
correlation studies have demonstrated, the mappings may be
neither simple nor linear. Often components are different on
several levels. An in vitro model is an abstract representation
designed for specific uses with specific expectations. One-to-
one congruence at all levels is infeasible. The relationships

Fig. 8. Validation of enzyme functionality within the ISTD. a The

target data, in vitro metabolite formation rate (filled circles) for

different initial concentrations of benzyloxyresorufin, were taken

from (17) and fit to the two-site kinetic model as discussed in the text

(see Table II). The curve shows the predicted values. The residual

sum of squares (RSS) is shown. b Simulated metabolite formation

rate measures for different doses of objects representing benzyl-

oxyresorufin: 600 objects in the S3 space mapped to 1 mM benzyloxy-

resorufin. The experiments were conducted as in Fig. 7. The black

squares are mean values (Tstandard error of the mean, n = 30). The

gray circles are the values from a replotted for comparison. The gray

curve is the trend line. The residual sum of squares (RSS) is shown.

Fig. 9. Predictions of logPeff values from co-administration of

multiple drugs. All 14 compounds (1,000 each) in Fig. 11 were added

to S1 with the ISTD parameterized as in Fig. 6. Thirty experiments

were conducted as before: logPtotal and logPeff values were calculat-

ed. Mean simulated values (Tstandard error of the mean) are plotted

against corresponding in vitro values: correlation coefficient = 0.881.

The straight gray line y = x. Insert Mean logPtotal and logPeff values

from the individual experiments in Fig. 6 are plotted against the

corresponding mean values from this experiment. Correlation

coefficients are 0.998 and 0.992, respectively.
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between an in silico model such as the ISTD and its in vitro

counterpart are expected to be similar to those between in
vitro models and their in vivo counterpart. By studying the in
vitro system, we intend to gain deeper insight into how the
in vitro system may be working. By analogy, we want in silico
models capable of facilitating deeper insight into how in vitro
systems actually work: we desire overlap, but not identity,
between in silico and in vitro system phenotypes and
mechanisms. With that overlap, there can be useful, predic-
tive mappings between the two system phenotypes and their
mechanisms. An advantage of this class of in silico models is
that once one model has been validated against an in vitro
counterpart, it can be modified and extended (morphed) to
simulate aspects of the in vivo referent of the in vitro system.

An in vitro-to-in vivo mapping could, for example,
compare relative features of in vitro treatments to cor-

responding observations in vivo. Specifically, when A is
metabolized more extensively than B by CYP 3A4 in vitro,
the same ranking is expected in vivo. To make the prediction
quantitative, a transformation is needed; the transform itself
is a model. It is impracticable to merge a model that enables
quantitative in vitro-to-in vivo transformation with an in vitro

wet-lab model: they are kept separate, and predictive,
transformation models are often developed and applied after
the fact. Should features enabling direct comparison of vitro
observables, such as rate of change of drug concentration in
the receiver compartment, with ISTD observables be built
into the ISTD or should they be kept separate, as in the in
vitro-to-in vitro case? The validation process started here will
help answer that question. For these studies, we elected to
make simulated time directly represent in vitro time and to
make the simulated elements directly comparable to their in

vitro counterparts with the expectation that results from the
validation experiments in Figs. 4 and 5 would become simple
and intuitive. However, the interpretation of other features
such as compound objects in S3 is left unspecified until a
comparison is made with specific in vitro data, as in Fig. 7.

Discretization and Resolution

An advantage of using discrete event models in this
context is that they allow the researcher to control the limits
of resolution (system granularity) and manage some of the
uncertainty. Below these levels of resolution, there is
uncertainty (it may range from limited to complete).
Nevertheless, systemic events and behaviors can be simulated
by using software logic (typically rules, axioms or principles)
as placeholders for in vitro details about which we are
uncertain. The level of resolution is important. A goal of
simulation research using analogues such as the ISTD is that
details (mechanisms) above the level of resolution will map
to corresponding details in vitro. However, at a level of
resolution, we can avoid making any claims about in silico-to-
in vitro mappings. As the science progresses, a goal will be to
replace simple objects that use rules and axioms (atomic
components) with composite objects that reflect hypothe-
sized mechanisms of interaction among lower scale compo-
nents (finer-grained), where each of the finer-grained objects
is atomic and uses rules and axioms as placeholders for even
more detailed mechanisms. When the devices are properly
designed, measurements taken from simulations of an ISTD
having low-resolution components will be indistinguishable
from measurements taken from simulations of another ISTD
in which a set of low-resolution components have been
replaced by higher-resolution components.

The enzyme component in Fig. 2 is an atomic compo-
nent. Its behavior over multiple time steps was intended to
mimic the corresponding behavior of two-site enzymes in
vitro of the type described in the Appendix. The results in
Table III and Figs. 7, 8, and 10 confirm that it does. However,
the logic used by each enzyme (Fig. 3) within a simulation
cycle is not intended to map to detailed events thought to
occur (but not known for certain), even though posited
details of those events guided design of the logic.

The simplest logic for controlling a compound_s reloca-
tion to a particular, adjacent element is a simple probability

Fig. 10. Simulated drug–drug interactions. ISTD experiments were

conducted as in Fig. 7; S3 contained 40 enzymes and the drug too had

the same PCPs as in Fig. 7. However, except for the control

experiments, an inhibitor having the same PCPs as the drug was

also added to S3. For the drug, s1Prob = MProb = 0.5 and s2Prob = 0.

a Black circles Initial metabolism rate is plotted against initial S3

substrate (drug) level in the absence of inhibitor (control). Open

symbols Initial metabolism rates when 10,000 inhibitors were added

to S3 along with drug. In one case, s1Prob = 0.25 and MProb = 0.5 for

the enzyme–inhibitor; in the other case s1Prob = MProb = 0.5. The

gray curves are trend lines. Insert A Lineweaver–Burke plot of the

same data. b Black circles Initial metabolism rates for the control

experiments are replotted. Open symbols Initial metabolism rates

when the three indicated amounts of inhibitors were added to S3

along with drug; for enzyme–inhibitor interaction, s1Prob = M-

Prob = 0.5. The gray curves are trend lines.
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p: if PRNe p, then the object moves; otherwise, it remains
within that element or does something else. However, we had
no guidelines for selecting initial values for such probability
parameters. Fortunately, we did have a rich literature of
physical models describing expected compound behavior under
idealized conditions. We elected initially to develop logics for
compound movement using those physical models. In doing so,
we have not changed ISTD resolution. We are uncertain about
the details of events governing movement within each of the
five spaces (more so, S2–4). We make no assumptions about
actual events within in vitro counterparts of the 104 elements
comprising each space. An element is the limit of spatial
resolution. Nevertheless, the results show that the logic used,
enabled the validation evidenced in Figs. 4 and 5.

Similarly, the logic used by a compound after entering a
pore could have been based simply on a probability for
exiting (in one direction or another) within a simulation
cycle. However, because we had no prior parameterization
guidelines, we again elected to base the logic on the accepted
physical model (8) detailed in the Appendix. The logic is
simply an in silico placeholder for uncertain events within
uncertain tight junction environments. In this and the above
situations, good science requires that multiple logic options
be considered and evaluated against each other as this class
of models evolves.

Experimenting with the ISTD

The feasibility (1,5,6,24) and scientific usefulness (25),
(2) of synthetic, quantitative, discrete event models have
been demonstrated. In this report, we began the iterative
process of validation and refinement with the objective of
taking an important step in achieving the five expectations
stated in the Introduction. The simulation experiments were
not designed to specifically demonstrate one of the nine
capabilities in the Appendix, yet together they are evidence
of important progress in achieving each. Collectively, the
results demonstrate that for simulated passive trans- and
paracellular transport of neutral, weak acid, and weak base
compounds (MWe 500), the ISTD functions acceptably as an
in silico analogue of an in vitro TD without stirring. Because
ISTD experimental results matched results from in vitro TD
experiments closely, over a range of compounds and con-
ditions, we can state that, viewed from the systemic
perspective, the mechanisms driving in silico transport are a
valid representation of those in vitro.

The data in Fig. 5b bring into focus differences between
inductive models and ISTDs. We compared expected alfen-
tanil transport from the two model types. The amount
expected to be transported to the basal compartment was
calculated using the mathematical model in (13);
corresponding values were determined from the in silico
experiments in Fig. 5a. Each trajectory in Fig. 5b is the ratio
of these values. All trajectories approached 1.0 with increas-
ing time. The largest deviations from 1.0 occur prior to 300 s.
An exact match was not expected because the inductive,
mathematical model and the ISTD are different. For
example, the mathematical model assumes bulk flow and
ignores the volume of cells. Consequently, there was no lag-
time. Nor were there a following surge in drug appearance in
the acceptor compartment. The ISTD did not use those

assumptions. The simulations showed a short interval before
compounds began reaching S5. During that interval, com-
pounds accumulated in S3, and that caused a subsequent
surge in compounds reaching S5. Such events are analogous
to those observed in vitro at early times.

The results in Fig. 6 illustrate an advantage of this class
of models. We tuned ISTD parameters to match the urea
(Fig. 4) and then the alfentanil data (Fig. 5). Without further
adjustments, we used the tuned ISTD to anticipate expected
in vitro passive permeability properties of 14 other com-
pounds known to undergo primarily passive transport. We
did so by simply dosing the ISTD with each of 14 different
compounds, labeled with compound-specific MW, pKa, and
logPow values, and then experimentally measuring the in
silico permeability properties of each. No other information
was used. The results in Fig. 6 matched reasonably well with
the in vitro measures of transport for those drugs. It is
noteworthy that expected values from a four-variable, linear
model (Fig. 6) were no more accurate. Importantly, the per-
meability properties were essentially the same when the
compounds were dosed together (Fig. 9). Having the capability
of studying different compounds simultaneously provides a
means of exploring drug–drug interactions in silico.

One might observe that an ISTD has many more
parameters than the simple, four-variable linear model in
Fig. 6 and thus express concern that the ISTD may be
overparameterized. Actually, for Figs. 6 and 9, the ISTD uses
just four parameters, the same PCP values used by the linear
model. All other parameter values were fixed following the
validations in Figs. 4 and 5.

Because the in vitro data in Fig. 6 came from different
in vitro experiments, we cannot speculate on the origins of
the discrepancies between simulated and in vitro values. For
comparable data on several passively transported com-
pounds, we anticipate iteratively refining the ISTD to
simultaneously increase the similarity between simulated
and in vitro logPeff values for all compounds in the set. To
do so, consideration of additional PCPs, including solubility,
may be required. We may also need to simulate stirring in
the donor compartment along with aspects of intracellular
heterogeneity. For compounds subject to metabolism, the
validated enzymes discussed below can be used. When
multiple enzymes are implicated, separately specified sets
of enzyme can be used. For compounds subject to one or
more transporters, components similar to those used in (1)
and (6) can be separately validated (as done here for
enzymes), added, and then tuned along with the other system
components.

The data in Figs. 7, 8, and 10 verify that in silico
measures of compounds interacting with enzymes are consis-
tent with what is expected, in theory, of drug molecules
interacting with and being metabolized by enzymes having
two interacting sites, even though the mapping between
compounds and enzymes, and drug and enzyme molecules is
not 1:1. The data in Fig. 8 provide validation evidence.
Because the simulations only use S3, the results provide
initial evidence of capabilities 5 (flexibility) and 6 (reusabil-
ity). The data in Fig. 10 verify that identical enzymes
interacting with two different compounds yield data consis-
tent with what is expected for competitive inhibition in
theory. Together, the results demonstrate that the operation-
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al properties of components intended for inclusion in the
ISTD can be separately verified and validated using sepa-
rately obtained in vitro data. Having such flexibility enables
us to explore answers to questions such as this: if Caco-2 cells
contained enzymes or transporters of a particular type, how
might the in vitro permeability properties of a Caco-2
monolayer change for a compound known to be a substrate?
The data in Figs. 9 and 10 demonstrate that the ISTD can be
used to study multiple drugs simultaneously.

Interestingly, the verification studies (SM, Fig. S1)
provided evidence that in the ISTD permeability declines
for compounds having logPow Q 3, especially for compounds
having smaller MWs. These behaviors were emergent prop-
erties of the local mechanisms: they were not pre-specified.

Although we do not present specific examples of
progress towards model adaptability (Appendix, capability
7), we have provided the necessary foundation for doing so.
As a first step toward an in silico intestine, for example, it
would be straight-forward to link several ISTDs in sequence
and modify the merged S1 spaces to represent flowing
intestinal content, and modify the merged S5 spaces to
represent flowing blood.

In conclusion, we validated an ISTD as being a synthetic,
discrete event analogue of Transwell devices. When given a
dose of compound labeled with values of MW, pKa, and
logPow, the ISTD simulates the passive transport events that
occur within Transwell devices. The results presented show
that the measured in silico properties can stand as reasonable
approximations of those expected from in vitro Transwell
device studies of targeted compounds. The results also
represent an important step forward in achieving simulation
models that can help us better understand and anticipate the
complex processes that underlie drug absorption and trans-
port across cellular barriers, while providing a means for
studying and exploring drug–drug interactions in silico.
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APPENDIX

Given the five expectations in the Introduction, we
worked backwards and specified capabilities needed for their
achievement, as done by Grant et al. (29), Tang et al. (30),
and Hunt et al. (5) in other modeling contexts. It will require
the design and validation of new types of in silico devices that
can exhibit at least nine capabilities.

1. Turing test: In silico Btransport^ data are, to a domain
expert (in a type of Turing test), experimentally
indistinguishable from the referent wet-lab transport
data; achieving this capability requires the in silico
device to be suitable for experimentation.

2. Phenotype overlap: There is meaningful overlap
between in silico and in vitro system phenotypes.
Consequently, the events occurring during simulated
transport, for example, accurately represent corre-
sponding in vitro events at a level of detail (granular-
ity) sufficient to mimic or predict specific phenotypic
attributes. The concepts underlying designing ana-
logues to achieve phenotype overlap (29,30) are similar
to those on which Pattern-Oriented Modeling is based
(31).

3. Mappings: Observables in silico are designed to be
consistent with in vitro observables. Doing so enables
clear mappings between in vitro and in silico compo-
nents and mechanisms.

4. Transparency: Simulation details as they unfold need
to be visualizable, measurable, and comparable where
feasible to those of the in vitro system.

5. Flexibility: It must be relatively simple to increase or
decrease detail in order to simulate an additional
phenotypic attribute or change usage and assumptions,
without requiring significant reengineering. Achieving
this capability will enable cycles of scientific testing
and device refinement, as new wet-lab data becomes
available. Having flexible methods will lead to im-
proved, more realistic and heuristic analogue systems.

6. Reusability: Device components can be designed to be
autonomous and thus can be easily reconfigured to
represent different cell types, experimental condi-
tions, and compounds, alone or in combination. It
must be easy to simulate and analyze outcomes of
several different in silico experiments in a fraction of
the time (and at a fraction of the cost) required to
complete the wet-lab experiments.

7. Adaptability: In addition to flexibility and reusability,
the components must be constructed so that they can
be adapted to function as components in physiologi-
cally based, intestine and whole organism models.

8. Components articulate: Because the system attributes
of interest may result from interactions of autono-
mous components, to study alternative mechanisms it
must be easy to join, disconnect, and replace them
without having to reengineer the in silico device or its
components.

9. Local mechanisms: as in vitro, the behaviors that
emerge during a simulation are the consequences of
local mechanisms–local component interactions.

To enable these capabilities, the in silico device must be
synthetic, as is the in vitro model (4,5), and its framework
must use discrete interactions. Temporally and spatially
discrete models offer theoretical and practical advantages
because they allow, even facilitate achieving the preceding
capabilities. Moreover, in the case where a continuous model
is desirable, a discrete model can simulate or approximate it
to arbitrary precision (25).
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The equations to determine D (including Da and Dm) are:

D ¼ $KBT

6��r
; where r ¼ 3

ffiffiffiffiffiffiffi
3V

4�

r

and V ¼ 1: �MW:

The first equation is the Stokes–Einstein equation to
calculate the diffusion coefficient for Brownian spheres. KB is
the Boltzmans constant, ; is a remedy coefficient (;= 1 for
the cell membranes and 1.67 for aqueous spaces). h is the
viscosity at 37-C, h = 5ej 3 Pa s for membranes and 0.69ej 3
Pa s for aqueous spaces). r is the radius of the referent
molecule assuming it is an ideal sphere and V is the
molecular van der Waals volume. V is proportional to MW
with l = 1.6755 according to the data in (12).

The equations to determine Deff in tight junctions are
from (8) and (14):

Deff ¼
( DF

�
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Deff is the effective diffusion coefficient through the
tight junctions. ( is the proportion of surface area covered by
the tight junctions. D is the aqueous diffusion coefficient. F is
the Renkin factor to describe the sieving effect of tight
junctions on molecules of different sizes. t is the tortuousity
of the tight junction passage, which is estimated as 2.5–3.0
times the height of tight junctions. k is the electrochemical
energy. f0 is the fraction of unionized molecules and f� is the
fraction of charged molecules. R is the estimated average
tight junction pore size. e is the unit charge of an electron. z is
the valence of a molecule. Dy is the electrical potential
difference across the membrane. K is the thermal constant,
and T is the Kelvin temperature converted from 37-C.

The mathematical equations derived from (8) to com-
pute Ptotal are:

MR

MD 0ð Þ
¼ HR

HR þHD

� �
1� e���T
� �

; where �

¼ Ptotal=HD
; and � ¼ HR þHDð Þ=HR

MR is the mass in the acceptor space; MD(0) is the initial
mass in the donor space; HR (2.6/4.71 cm) and HD (1.5/4.71
cm) are the thicknesses of the receiver and donor spaces,
respectively; T is time.

The analytical solution to the substrate initial reaction
rate n in the presence of inhibitors for the two-site enzyme is
based on the kinetic model in Fig. 11, and is (17):

v ¼
Vmax

1
Ks
þ �0 S½ �

�0KiKs

	 


1
S½ � þ 1

Ks
þ 1

Ki
þ S½ �

�0KiKs

Vmax is the maximal reaction rate of the substrate

without inhibitors; KS is the Michaelis–Menten constant of
the substrate; Ki is the Michaelis–Menten constant of the
inhibitor; a¶ is the enhancing factor for the second site
binding when one and only one site is bound with a molecule;
�0 0 � �0 � 1ð Þ is the inhibition factor of generating metab-
olites. The parameters in Table III used the equation above.
Dissociation constants for all species in Fig. 11 are defined by
KS ¼ k�1=k1 , Ki ¼ k�2=k2 , �0Ki ¼ k�3=k3 and �0KS ¼
k�4=k4 .
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